Correlation and Estimation of Gas-Chloroform and Water-Chloroform Partition Coefficients by a Linear Free Energy Relationship Method

Michael H. Abraham, ${ }^{*} \dagger$ James A. Platts, ${ }^{\dagger}$ Anne Hersey, \ddagger Albert J. Leo, ${ }^{\S}$ and Robert W. Taftㅔ
Contribution from Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, U.K.; Science Development Group, GlaxoWellcome Research and Development, Park Road, Ware SG12 ODP, U.K.; Seaver Chemistry Laboratory, Pomona College, Claremont, California 91711; and Department of Chemistry, University of California, Irvine, California 92717.

Received January 11, 1999. Accepted for publication April 7, 1999.

Abstract

A linear free energy relationship, LFER, has been used to correlate 150 values of gas-chloroform partition coefficients, as $\log L^{\text {chl }}$ with a standard deviation, sd, of $0.23 \log$ units, a correlation coefficient t^{2} of 0.985 , and an F-statistic of 1919. The equation reveals that bulk chloroform is dipolar/polarizable, of little hydrogen-bond basicity, but as strong a hydrogen-bond acid as bulk methanol or bulk ethanol. However, the main influence on gaseous solubility in chloroform is due to solute-solvent London dispersion interactions. A slightly modified LFER has been used to correlate 302 values of water-chloroform partition coefficients, as $\log P_{\text {chl }}$. The correlation equation predicts $\log P_{\text {chl }}$ for a further 34 compounds not used in the equation with $s d=0.17 \log$ units. When the LFER is applied to all $335 \log P_{\text {ch }}$ values, the resulting equation has $s d=0.25, r^{2}=0.971$, and $\mathrm{F}=2218$.

Introduction

The partition coefficient of a solute, as $\log \mathrm{P}$, has widespread applications in such diverse areas as environmental chemistry, biochemistry, pharmaceutical chemistry, toxicology, and chemical engineering. ${ }^{1}$ Following the work of Hansch and Lee, ${ }^{2}$ the water-octanol partition coefficient, as $\log \mathrm{P}_{\text {ott, }}$, has become a standard parameter in quantitative structure-activity relationships (QSARs), and in the definition of solute lipophilicity. ${ }^{3}$ However, other watersolvent systems have been used, especially as models for biochemical proceses; ${ }^{3,4}$ indeed the first such system used in this way was water-olive oil. ${ }^{4}$
The water-chloroform system has been used to estimate solute lipophilicity, as $\log \mathrm{P}_{\mathrm{ch1}},{ }^{5}$ and both the watercydohexane and water-chlor oform systems have been used to examine the hydrophobicities of nucleic acid bases. ${ }^{6}$ The later system has been put forward as one of a "critical quartet" of water-sol vent systems that encapsulates most of the information contained in water-solvent systems, in general. ${ }^{2}$ Comparisons of water-solvent $\log \mathrm{P}$ values, including $\log \mathrm{P}$ chl , have been made, ${ }^{8}$ but only recently have attempts been made to compute $\log \mathrm{P}_{\mathrm{chl}}$ values. Some of these computations refer to relative partition coefficients, ${ }^{9,10}$ but others to absolute values; ${ }^{11-14}$ we comment only on these latter calculations.
All the reported computations of $\log \mathrm{P}_{\mathrm{cl}}$ involve the separate calculation of gas-water partition coefficients, L^{w}, and gas-chloroform partition coefficients, Lchl. Various

[^0]standard states can be used to define L, or the related Gibbs free energy change, $\Delta G^{\circ}=-R T \ln L$. We prefer to work with equilibrium constants ${ }^{15}$ and define L as a dimensionless quantity via eq 1 .
$L=$ concn (M) sol ute in solvent/
concn (M) solute in gas phase (1)
Then $\log \mathrm{P}_{\text {chl }}$ is given by eq 2 . As we shall see, eq 2 is valuable, not only in the calculation of $\log \mathrm{P}_{\text {chl }}$, but also as one method of experimental determination of $\log \mathrm{P}_{\text {cll }}$.
\[

$$
\begin{equation*}
\log P_{c h l}=\log L^{\text {chl }}-\log L^{w} \tag{2}
\end{equation*}
$$

\]

A GB/SA continuum model together with the OPLS all atom force field was used by Reynol ds ${ }^{11}$ to compute $\log \mathrm{L}^{\mathrm{w}}$, $\log \mathrm{Lal}$, and hence $\log \mathrm{P}$ chl for 30 diverse, but monofunctional, compounds. The standard deviation, sd, between the 30 calculated and observed $\log \mathrm{P}_{\text {chl }}$ values was 0.87 log units with sd defined as $\left[\left(Y_{\text {calcd }}-Y_{\text {obsd }}\right)^{2} /(n-V-1)\right]^{1 / 2} ; n$ is the number of data points and V the number of variables (zero in the present case). The average deviation, ($\mathrm{Y}_{\text {calcd }}$ $Y_{\text {obsd }} / / \mathrm{n}$ was only 0.01 log units, but it was suggested that systematic deviations at low $\log \mathrm{P}_{\text {cı }}$ and high $\log \mathrm{P}_{\text {chl }}$ values occurred. A plot of observed vs calculated $\log \mathrm{P}_{\text {chl }}$ values indeed yielded a smaller standard deviation; see eq 3 . In eq 3 and elsewherer is the correlation coefficient and F is the Fischer F -statistic.

$$
\begin{align*}
\log P_{\text {ch }}(\text { obsd }) & =0.055+0.732 \log P_{\text {ch }}(\text { cal cd }) \tag{3}\\
n=30, s d & =0.51, r^{2}=0.919, F=318
\end{align*}
$$

Various other computations of $\log \mathrm{L}^{\text {dl }}$ have been made ${ }^{12-14}$ on data sets that vary from only 16 compounds to 88 compounds; see Table 1. In general, the computations summarized in Table 1 lead to $\log \mathrm{L}$ chl values with an sd of 0.3 to $0.7 \log$ units and tolog $\mathrm{P}_{\text {chl }}$ values with a much larger sd of $0.5-1.0 \mathrm{log}$ units, even when trained on experimental values. The larger error in $\log \mathrm{P}_{\text {chl }}$ is expected, because this will include errors in both \log Lchl and in $\log \mathrm{L}^{\mathrm{w}}$. Additionally, any experimental errors in $\log \mathrm{P}$ ch will also contribute to the overall sd value, and it is not easy to assess this contribution, especially for small data sets. In general, the more compounds in a data set, the larger will be the sd value, because of the more varied and more complicated structures in the data set.
The method of multiple linear regression analysis (MLRA) has been applied to the correlation of $\log \mathrm{P}_{\text {chl }}$ values, using various physicochemical parameters as descriptors. $1,6,18-20$ A summary of results is in Table 1. Only one, preliminary MLRA of \log Lall has been reported, ${ }^{19}$ as shown in Table 1 also. The disadvantage of the MLRA method, as compared

Table 1-Computations and Calculations of $\log P_{\text {chl }}$ and $\log L^{\text {chl }}$

reference	untrained set		trained set		r^{2}	F
	n	sd	n	sd		
A. $\log P_{\text {chl }}$						
Cramer (SM5.4A) ${ }^{13}$			26	0.93		
Cramer (SM5.4P) ${ }^{13}$			26	0.96		
Jorgensen ${ }^{14}$			16	0.67		
Marcus (MLRA) ${ }^{18}$			66	0.16	0.994	2973
Taylor (MLRA) ${ }^{\text {7a }}$			33	0.11	0.993	610
Maurer (MLRA) ${ }^{\text {1d }}$			50	0.12		
Testa (MLRA) ${ }^{19 \mathrm{~b}}$			60	0.29	0.950	369
Abraham (MLRA) ${ }^{19 a}$			112	0.11	0.994	3785
this work (MLRA)			335	0.25	0.971	2218
B. $\log L^{\text {chl }}$						
Luque (6-31G) ${ }^{12}$	27	0.28				
Luque (AM1) ${ }^{12}$	27	0.30				
Luque (MNDO) ${ }^{12}$	27	0.28				
Luque (PM£) ${ }^{12}$	27	0.30				
Cramer (OSM5.4A) ${ }^{13}$	88					
Cramer (OSM5.4P) ${ }^{13}$	88					
Cramer (SM5.4A) ${ }^{13}$			88	0.53		
Cramer (SM5.4P) ${ }^{13}$			88	0.67		
Jorgensen ${ }^{14}$	16	0.69	16	0.52	a	272
Abraham (MLRA) ${ }^{\text {19a }}$			35	0.15	0.994	754
this work			150	0.23	0.985	1919

${ }^{\text {a }}$ See note 17.
with computational methods, is that it requires experimental values to use as a training set. However, the untrained computations reported in Table 1 lead to very considerable errors, and if computations have to be trained on experimental data in order to reduce errors to reasonable values, much of the computational advantage disappears. In the event, the trained MLRA method seems capable of leading to rather smaller sd values than do the trained computational methods reported to date. Hence the aim of this work is to determine further $\log \mathrm{P}_{\text {chl }}$ values in order to extend the experimental database and then to apply MLRA methods to a very much enlarged database. Not only will this provide very general correlations, but it will overcome difficulties inherent in the use of small data sets.

There are several problems with the use of small data sets. First, the data set might not be representative. I ndeed, a very small data set cannot be representative, in that it will not contain examples of many types of compound that could be included in a full data set. For example, neither the 30 compound data set ${ }^{11}$ nor the 16 compound data set ${ }^{14}$ contain any compound with a sulfur or with an iodine atom. Second, it is very difficult to assess the effect of possible experimental error when using a small data set. It was suggested that large values of (calculated - observed) $\log \mathrm{P}_{\mathrm{chl}}$ for trimethylamine (1.68) and dimethylamine (1.29) in the 16 compound data set and for diethylamine (1.24) in the 30 compound set were possibly due to experimental errors arising from protonation of the amine in the aqueous layer, but the large differences could also be due to a systematic computational error for aliphatic amines. Third, we know from our own experience in the measurement of $\log \mathrm{P}_{\text {chl }}$ values, that experimental errors, especially with large values of $\log \mathrm{P}_{\text {chl }}$, can be much greater than expected from measurement of $\log P_{o c t}$, for example. A very erroneous experimental value in a small training set might bias a correlation so that the error becomes undetected (and the correlation becomes incorrect), whereas this is much less likely to occur with a large training set.

Methodology

A number of sources of data were used to compile the $\log P_{c h l}$ and $\log \mathrm{L}$ chl values. Most of the $\log \mathrm{P}_{\text {chl }}$ values were taken from the MedChem database, ${ }^{21}$ and others were measured by the usual shake-flask method. For compounds that are gaseous at room temperature, $\log \mathrm{P}_{\mathrm{ch}}$ could often be obtained from experimental values of $\log L^{c h l}$ and \log Lw through eq 2. Directly determined $\log \mathrm{L}$ chl values were available e^{22} for the rare gases, hydrogen, oxygen, nitrogen, nitrous oxide, carbon monoxide, and a few organic solutes. Other $\log \mathrm{L}$ chl values could be obtained from known infinite dilution activity coefficients of solutes in chloroform together with known vapor pressures, ${ }^{23}$ through $\mathrm{K}^{\mathrm{H}}=\gamma^{\infty} \mathrm{p}^{\circ}$ where K^{H} is Henry's constant; L is the inverse of K^{H} with due regard to units. A large number of $\log \mathrm{Lchl}$ values were deduced from $\log P_{c h 1}$ and known ${ }^{24,25}$ values of $\log L^{w}$ through eq 2. We finally assembled 335 values of $\log \mathrm{P}_{\mathrm{chl}}$ and 150 values of $\log L^{\text {chl }}$ to use in our correlative equations, as set out in Table 2.

The MLR equation we use to correlate log L chl is the linear free energy relationship (LFER) ${ }^{26}$ shown as eq 4.

$$
\begin{equation*}
\log S P=c+r R_{2}+s \pi_{2}{ }^{H}+a \Sigma \alpha_{2}{ }^{H}+b \Sigma \beta_{2}{ }^{H}+I \log L^{16} \tag{4}
\end{equation*}
$$

Here, SP is a set of solute properties in a given system, for example $L^{\text {chl }}$ values, and the independent variables are solute descriptors as follows. ${ }^{26} \mathrm{R}_{2}$ is an excess molar refraction, $\pi_{2}{ }^{\mathrm{H}}$ is the dipolarity/polarizability, $\sum \alpha_{2}{ }^{\mathrm{H}}$ is the overall hydrogen-bond acidity, $\Sigma \beta_{2}{ }^{H}$ is the overall hydrogenbond basicity, and L^{16} is the gas-liquid partition coefficient on hexadecane at $298 \mathrm{~K} .{ }^{28}$

The coefficients in eq 4 are found by MLRA. They are not just fitting constants, but contain information on the properties of the system under investigation; in particular they refer to chemical properties of the solvent phase. The r-coefficient reflects the interaction of the phase with solute π - and σ-lone pairs, the s-coefficient is a measure of the phase dipolarity/polarizability, the a-coefficient is a measure of the phase hydrogen-bond basicity, the b-coefficient is a measure of the phase hydrogen-bond acidity, and the I-coefficient is a measure of the phase hydrophobicity. Equation 4 has been applied to numerous sets of gas-liquid chromatographic data, ${ }^{26,27}$ to gas-solid adsorption, ${ }^{28}$ to the solubility of gases and vapors in water, ${ }^{24}$ organic solvents, ${ }^{20}$ biological systems, ${ }^{29}$ polymers, ${ }^{30}$ and petroleum oils, ${ }^{31}$ to the characterization of phases for chemical sensors, ${ }^{32}$ to the characterization of fullerene, ${ }^{33}$ and in the analysis of the effect of gases and vapors in nasal pungency ${ }^{34}$ and eye irritation. ${ }^{35}$

A very similar equation to eq 4 is used ${ }^{26}$ to correlate processes within condensed phase; it differs only in that the final descriptor is the McGowan ${ }^{36}$ characteristic volume, V_{x}, in $\left(\mathrm{mL} \mathrm{mol}{ }^{-1}\right) / 100$. The interpretation of eq 5 follows closely that of eq 4, but now the coefficients refer to the difference of properties of the (two) condensed phases. Equation 5 is also a well-tested equation and has been applied to the solubility of gases and vapors in water, ${ }^{24}$ to numerous water-solvent partition systems, ${ }^{19}$ to HPLC systems, ${ }^{37}$ to thin-layer chromatography, ${ }^{38}$ to microemulsion electrokinetic chromatography, ${ }^{39}$ to watermicelle partitions, ${ }^{40}$ to micellar electrokinetic chromatography, ${ }^{41}$ to aqueous anesthesia, ${ }^{42}$ to blood-brain distribution, ${ }^{43}$ to brain perfusion, ${ }^{44}$ and to skin permeation. ${ }^{45}$

$$
\begin{gathered}
\log \mathrm{SP}=\mathrm{c}+\mathrm{rR} \mathrm{R}_{2}+\mathrm{s} \pi_{2}^{\mathrm{H}}+\mathrm{a} \mathrm{\Sigma} \mathrm{\alpha}_{2}^{\mathrm{H}}+\mathrm{b} \Sigma \beta_{2}^{\mathrm{H}}+\mathrm{vV}_{x} \\
\text { Results }
\end{gathered}
$$

The values of $\log L^{\text {chl }}$ and $\log \mathrm{P}_{\text {chl }}$ that were used in the regression equations are in Table 2. There are far fewer

Table 2-Values of $\log L^{\text {chl }}$ and $\log P_{\text {chl }}$ Used in the Regressions

compound name	$\log L^{W a}$	$\log L^{\text {chlb }}$		$\log P_{\text {chl }}{ }^{c}$		compound name	$\log L^{W a}$	$\log L^{\text {chlb }}$		$\log P_{\text {chl }}{ }^{\text {c }}$	
		obsd	calcd	obsd	calcd			obsd	calcd	obsd	calcd
krypton	-1.21	$0.01{ }^{\text {d }}$	-0.039	1.22^{e}	1.358	propan-2-ol	3.48	3.13	3.084	-0.35	-0.286
xenon	-0.97	$0.53{ }^{\text {d }}$	0.539	$1.50{ }^{\text {e }}$	1.706	butan-1-ol	3.46	3.88	3.876	0.42	0.431
radon	-0.65	$1.12^{\text {d }}$	1.029	$1.72{ }^{e}$	1.936	2-methylpropan-1-ol	3.30	3.64	3.658	0.34	0.441
hydrogen	-1.72	$-1.18^{\text {d }}$	-1.01	$0.54{ }^{\text {e }}$	0.782	butan-2-ol	3.39	3.69	3.645	0.30	0.306
nitrogen	-1.80	$-0.87{ }^{\text {d }}$	-0.792	$0.93{ }^{\text {e }}$	1.258	2-methylpropan-2-ol	3.28	3.26	3.273	-0.02	0.25
nitrous oxide	-0.23	$0.71^{\text {d }}$	0.865	$0.94{ }^{\text {e }}$	1.035	pentan-1-ol	3.35	4.40	4.374	1.05	1.02
carbon monoxide	-1.63	$-0.71^{\text {d }}$	-0.598	$0.92{ }^{\text {e }}$	1.12	hexan-1-ol	3.23	4.92	4.874	1.69	1.61
hexane	-1.82	$2.87{ }^{\text {f }}$	2.786	$4.69{ }^{\text {e }}$	4.325	heptan-1-ol	3.09	5.50	5.369	2.41	2.2
octane	-2.11	$3.90{ }^{\text {g }}$	3.777	$6.01{ }^{\text {e }}$	5.506	cyclohexanol	4.01	5.13	5.131	1.12	0.997
cyclohexane	-0.90	3.26	3.021	4.16	3.879	prop-2-en-1-ol	3.69	3.18	3.22	-0.51	-0.369
chloromethane	0.40	$1.82{ }^{\text {h }}$	1.811	1.42^{e}	1.481	2-chloroethanol				-0.40	-0.902
dichloromethane	0.96	$2.69{ }^{\text {i }}$	2.731	$2.00{ }^{\text {e }}$	1.745	3-chloropropan-1-ol				-0.03	0.035
trichloromethane	0.79	$3.07{ }^{\text {j }}$	3.034	$2.28{ }^{\text {e }}$	2.239	propan-1,3-diol				-2.90	-2.626
tetrachloromethane	-0.06	3.251	3.143	$3.31{ }^{e}$	3.348	diethyl sulfide	1.07	4.71	3.908	3.64	2.64
1,1-dichloroethane	0.62	$3.01{ }^{1}$	3.029	$2.39{ }^{\text {e }}$	2.185	dimethyl sulfoxide	7.41	$6.56{ }^{n}$	6.642	$-0.85{ }^{\text {e }}$	-0.729
1,2-dichloroethane	1.31	$3.44{ }^{1}$	3.428	$2.13{ }^{\text {e }}$	2.107	thiourea				-3.14	-2.922
1,1,1-trichloroethane	0.14	$3.24{ }^{1}$	3.269	3.10^{e}	3.09	tributylphosphine oxide				3.08	2.856
1,1,2-trichloroethane	1.46	$3.87{ }^{1}$	4.168	2.41^{e}	2.453	trimethyl phosphate	$6.52{ }^{\text {m }}$	7.28		0.76	0.546
1-chloropropane	0.24	$2.66{ }^{h}$	2.84	$2.46{ }^{\text {e }}$	2.6	triethyl phosphate	5.53	7.81	7.537	2.28	2.133
bromoethane	0.54	$2.78{ }^{f}$	2.697	$2.24{ }^{\text {e }}$	2.185	tripropyl phosphate				3.67	3.587
iodomethane	0.65	$2.78{ }^{k}$	2.55	$2.13{ }^{e}$	1.946	benzene	0.63	3.39	3.384	2.76	2.741
1,1,2-trifluorotrichloroethane	-1.30	$2.54{ }^{\text {i }}$	2.494	$3.84{ }^{\text {e }}$	3.675	toluene	0.65	4.06	3.918	3.41^{\prime}	3.33
diethyl ether	1.17	3.05	3.051	1.88	1.752	ethylbenzene	0.58	4.28	4.357	3.70	3.892
diisopropyl ether	0.39	2.77	3.404	$2.38{ }^{\prime}$	3.088	o-xylene	0.66	4.57	4.561	3.91	3.846
tetrahydrofuran	2.55	$3.86{ }^{f}$	3.893	$1.31{ }^{\text {e }}$	1.127	m-xylene	0.61	4.29	4.437	3.68	3.855
tetrahydropyran	2.29	4.28	4.348	1.99	1.77	biphenyl	1.95	6.62	6.86	4.67	4.81
1,4-dioxane	3.71	$4.44{ }^{9}$	4.629	$0.73{ }^{e}$	0.74	naphthalene	1.73	5.78	5.865	4.05	4.039
propanone	2.79	3.29	3.287	0.50	0.562	phenanthrene	2.80	7.86	8.452	5.06	5.244
butanone	2.72	3.87	3.891	1.15	1.209	fluorobenzene	0.59	3.13	3.473	2.54	2.912
diethyl carbonate				3.22	2.216	chlorobenzene	0.82	4.22	4.242	3.40	3.46
propylene carbonate				0.60	0.589	1,3-dichlorobenzene	0.72	4.59	4.936	3.87	4.134
δ-pentanolactone				0.95	0.928	1,4-dichlorobenzene	0.74	4.63	4.999	3.89	4.123
methyl acetate	2.30	3.46	3.379	1.16	1.091	2-chloronaphthalene				4.56	4.754
ethyl acetate	2.16	3.98	3.771	1.82	1.683	bromobenzene	1.07	4.70	4.649	3.63	3.606
propyl acetate	2.05	4.61	4.25	2.56	2.28	iodobenzene	1.28	4.85	5.073	3.57	3.865
butyl acetate	1.94	4.99	4.786	3.05	2.867	methyl phenyl ether	1.80	4.92	4.903	3.12	2.987
pentyl acetate	1.84	5.44	5.27	3.60	3.457	ethyl phenyl ether	1.63	5.25	5.243	3.62	3.49
methyl propanoate	2.15	4.02	3.847	1.87	1.695	benzaldehyde	2.95	5.20	5.403	2.25	2.383
methyl pentanoate	1.88	4.89	4.802	3.01	2.873	2-methoxybenzaldehyde				2.53	2.807
methyl hexanoate	1.83	5.31	5.292	3.48	3.459	phenylacetaldehyde				2.07	2.222
ethyl acetoacetate				1.49	1.566	acetophenone	3.36	6.15	6.024	2.79	2.66
ethyl trifluoroacetate				2.00	1.942	benzyl methyl ketone				$3.53{ }^{\prime}$	2.664
ethyl trichloroacetate				3.47	3.537	9 -fluorenone				3.95	3.772
acetonitrile	2.85	3.25	3.321	0.40	0.383	methyl benzoate	2.88	5.68	6.046	2.80	3.024
ammonia	3.15	1.77	1.699	-1.38	-1.366	phenyl acetate				2.33	2.628
methylamine	3.34	2.32	2.574	-1.02	-0.811	dimethyl phthalate				3.09	3.003
ethylamine	3.30	2.95	2.993	-0.35	-0.326	diethyl phthalate				3.69	4.107
propylamine	3.22	3.47	3.455	0.25	0.263	benzonitrile	3.09	5.75	5.536	2.66	2.526
butylamine	3.11	3.86	3.924	0.75	0.854	phenylacetonitrile				2.25	2.69
dimethylamine	3.15	2.71	2.929	-0.44	-0.23	1,2-dicyanobenzene				$2.60{ }^{\prime}$	2.421
diethylamine	2.99	3.78	3.771	0.79	0.843	1,3-dicyanobenzene				2.12	2.147
diisopropylamine	2.36	3.97	4.299	1.61	1.894	1,4-dicyanobenzene				2.60	2.304
trimethylamine	2.35	2.86	2.843	0.51	0.613	aniline	4.30°	5.65	5.3	1.35	1.283
triethylamine	2.36	4.22	4.362	1.86	1.986	o-toluidine	4.06	6.02	5.788	1.96	1.85
nitromethane	2.95	$3.39{ }^{\prime}$	3.473	$0.44{ }^{\text {e }}$	0.523	p-toluidine	4.09	6.04	5.861	1.95	1.831
acetamide	7.12	5.15		-1.97	-2.049	4-ethylaniline				2.28	2.44
proprionamide	6.88	5.48		-1.40	-1.494	4-propylaniline				2.99	2.928
N, N-dimethylacetamide				-0.13	0.484	4-isopropylaniline				2.51	2.768
2,2,2-trichloroacetamide				0.31	0.427	4-butylaniline				3.37	3.521
ethyl carbamate				0.12	-0.32	4-chloroaniline	4.33	6.42	6.263	2.09	1.964
formic acid				-2.12	-2.044	2-nitroaniline	5.41	7.24	7.285	1.83	1.933
acetic acid	4.91	3.45	3.317	-1.46	-1.397	3-nitroaniline	6.49	8.09	7.963	1.60	1.518
propanoic acid	4.74	3.88	3.877	-0.86	-0.814	4-nitroaniline	7.54	8.80	8.703	1.26	1.276
butanoic acid	4.66	4.39	4.383	-0.27	-0.215	3-aminoacetophenone				1.73	1.67
2-methylpropanoic acid				-0.26	-0.334	4-aminopropriophenone				2.13	1.972
pentanoic acid	4.52	4.84	4.901	0.32	0.383	2,4-dimethylaniline				2.27	2.384
3-methylbutanoic acid	4.47	4.66	4.699	0.19	0.253	N -methylaniline	3.44	5.84	5.765	2.40	2.115
hexanoic acid	4.56	5.58	5.449	1.02	0.968	N, N-dimethylaniline	2.53	6.01	5.791	3.48	3.353
2-methylpentanoic acid				0.90	0.843	N, N-diethylaniline				4.26	4.538
octanoic acid	$4.44{ }^{m}$	6.61	6.524	2.17	2.146	1-naphthylamine	5.34	7.94	7.962	2.60	2.466
2-methylpropenoic acid				0.00	-0.291	2-naphthylamine	5.48	8.18	8.014	2.70	2.463
chloroacetic acid				-1.65	-1.176	4-aminobiphenyl				3.14	3.483
trichloroacetic acid				-1.11	-0.608	benzylamine				1.18	1.33
succinic acid				-1.92	-1.824	1-amino-2-phenylethane				1.37	1.222
water	4.64	1.54	1.697	-3.10	-2.968	nitrobenzene	3.02	5.71	5.899	2.69	2.8
methanol	3.74	2.41	2.271	-1.33	-1.497	2-nitrotoluene	2.63	6.02	6.217	$3.39{ }^{\prime}$	3.389
ethanol	3.67	2.80	2.767	-0.87	-0.747	3 -nitrotoluene	2.53	5.98	6.374	3.45	3.498
propan-1-01	3.56	3.26	3.309	-0.30	-0.158	4-nitrotoluene				3.31	3.39

Table 2-(Continued)

compound name	$\log L^{W a}$	$\log L^{\text {chib }}$		$\log P_{\text {chl }}{ }^{\text {c }}$		compound name	$\log L^{W a}$	$\log L^{\text {chlb }}$		$\log P_{\text {chl }}{ }^{c}$	
		obsd	calcd	obsd	calcd			obsd	calcd	obsd	calcd
4-nitroanisole				3.18	3.169	methyl phenyl sulfoxide				1.41	1.193
1,2-dinitrobenzene				2.64	3.002	diphenyl sulfoxide				3.36	3.111
1,3-dinitrobenzene				2.63	2.729	methyl phenyl sulfone				1.93	1.931
1,4-dinitrobenzene				2.62	2.748	phenylthiourea				0.56	0.541
benzamide	8.07	8.19	8.177	0.12	0.106	benzenesulfonamide				-0.24	-0.009
N-methylbenzamide				0.95	0.844	N -methylbenzenesulfonamide				1.31	1.326
N -ethylbenzamide				1.54	1.432	N, N-dimethylbenzenesulfonamide				2.69	2.736
N, N-dimethylbenzamide				1.75	1.819	3-methylbenzenesulfonamide				0.32	0.405
acetanilide	$7.01{ }^{\circ}$	7.81		0.80	0.76	4-methylbenzenesulfonamide				0.33	0.337
phthalimide				1.46	1.253	pyridine	3.44	4.73	4.525	1.29	1.14
benzoic acid				0.60	0.737	2-methylpyridine	3.40	5.12	4.907	1.72	1.555
2-methylbenzoic acid				1.76	1.502	3-methylpyridine	3.50	5.39	5.113	1.89	1.674
4-methylbenzoic acid				1.36	1.295	4-methylpyridine	3.62	5.50	5.135	1.88	1.67
4-ethylbenzoic acid				1.85	1.856	2-ethylpyridine	3.18	5.44	5.275	2.26	2.129
4-butylbenzoic acid				2.86	3.067	2-chloropyridine	3.22	5.22	5.345	2.00	2.077
2-chlorobenzoic acid				0.90	0.945	2-bromopyridine				2.22	2.383
4-chlorobenzoic acid				1.72	1.585	3-bromopyridine				1.65	2.375
2-bromobenzoic acid				0.91	0.95	2-methoxypyridine	$2.96{ }^{\text {m }}$	5.17	4.96	2.21	2.182
3-bromobenzoic acid				2.04	1.713	2-acetylpyridine				1.93	1.856
2-iodobenzoic acid				1.09	1.067	2-cyanopyridine				1.42	1.605
2-methoxybenzoic acid				1.65	2.32	3-cyanopyridine	4.95	6.29	6.239	1.34	1.3
4-methoxybenzoic acid				1.19	1.369	4-cyanopyridine	4.42	5.71	6.007	1.29	1.422
2-nitrobenzoic acid				-0.08	0.312	4-aminopyridine				-0.71	-0.656
3-nitrobenzoic acid				0.48	0.482	2-(N, N-dimethylamino)pyridine				2.45	2.389
4-nitrobenzoic acid				0.67	0.864	nicotine				1.89	2.552
4-aminobenzoic acid				-0.92	-0.901	piperidine	3.75	4.67	4.705	0.92	0.832
phenylacetic acid				0.49	0.546	N -methylpiperidine	2.77	4.21	4.66	1.44	1.731
3 -phenylpropanoic acid				1.20	1.15	atropine				2.44	2.534
4-phenylbutanoic acid				1.78	1.9	N-methyl-2-pyridone				0.26	0.762
phenol	4.85	5.17	5.081	0.32	0.408	quinoline	4.20	7.34	6.726	3.14	2.668
2-methylphenol	4.31	5.54	5.444	1.23	1.271	isoquinoline				2.98	2.647
3-methylphenol	$4.60{ }^{\circ}$	5.49		0.89	0.963	pyrrole				0.91	0.252
4-methylphenol	4.50	5.56	5.588	1.06	1.07	indole				2.95	1.882
2,4-dimethylphenol	4.41	5.91	6.035	1.50	1.544	3-methylindole				2.24	2.496
2,5-dimethylphenol	4.34	5.93	6.003	1.59	1.585	carbazole				3.75	3.592
3,5-dimethylphenol	4.60	6.20	6.153	1.60	1.5	imidazole				-0.83	-1.667
2-ethylphenol				1.73	1.627	N -methylimidazole				0.29	0.137
3-ethylphenol	4.59	6.00	6.142	1.41	1.501	benzimidazole				-0.02	-0.096
4-ethylphenol	4.50	5.97	6.118	1.47	1.538	2-cyanopyrazine				1.03	1.012
2-isopropyl-5-methylphenol				2.80	2.586	pyrazine	$4.18{ }^{\circ}$	4.77	4.688	0.59	0.616
2-fluorophenol	3.88	4.45	4.557	0.57	0.643	2-methylpyrazine	4.04	5.08	5.007	1.04	1.088
2-chlorophenol	3.34	4.70	5.38	1.36	1.792	2,3-dimethylpyrazine				1.46	1.435
3-chlorophenol	4.85	5.87	6.041	1.02	1.099	2,6-dimethylpyrazine				1.54	1.465
4-chlorophenol	5.16	6.23	6.127	1.07	0.984	trimethylpyrazine				1.93	1.82
2-bromophenol				1.64	1.937	tetramethylpyrazine				2.32	2.145
4-bromophenol	5.23	6.30	6.495	1.07	1.195	2-ethylpyrazine	4.00	5.66		1.66	1.642
2 -iodophenol	4.55	6.52	6.077	1.97	2.001	2,3-diethylpyrazine				2.47	2.413
4-iodophenol				1.56	1.54	2-methyl-3-isobutylpyrazine				2.85	2.935
2,4-dichlorophenol				2.09	2.079	2-fluoropyrazine				1.07	1.087
2-methoxyphenol	4.09	5.79	5.953	$1.70{ }^{\prime}$	1.698	2-chloropyrazine				1.59	1.698
3-methoxyphenol	5.62	6.39	6.527	0.77	0.869	2-methoxypyrazine				1.71	1.701
4-methoxyphenol				0.46	0.627	2-ethoxypyrazine				2.25	2.23
2-hydroxybenzaldehyde				2.21	2.516	2-propoxypyrazine				2.89	2.761
4-hydroxybenzaldehyde	7.68	7.54	7.356	-0.14	-0.196	methyl 2-pyrazinecarboxylate				$1.36{ }^{\prime}$	1.289
4-hydroxyacetophenone				0.08	0.109	ethyl 2-pyrazinecarboxylate				1.88	1.789
2-nitrophenol	3.36	5.89	6.075	2.53	2.623	2-acetylpyrazine				1.42	1.342
3-nitrophenol	7.06	7.56	7.637	0.50	0.545	2-(dimethylamino)pyrimidine				1.99	1.905
4-nitrophenol	7.81	8.01	8.043	0.20	0.29	5-(dimethylamino)pyrimidine				1.33	1.272
2,4-dinitrophenol				2.25	2.428	2-cyanopyrimidine				0.84	0.801
2-hydroxybenzoic acid				0.58	0.637	2-thiomethoxypyrimidine				1.93	1.836
resorcinol				-1.34	-1.919	pyrimidine				0.32	0.455
methyl 4-hydroxybenzoate				1.23	0.925	2-methylpyrimidine				0.67	0.873
ethyl 4-hydroxybenzoate				1.78	1.517	5-methylpyrimidine				0.95	0.941
methyl 2-hydroxybenzoate				3.15	3.165	2-fluoropyrimidine				0.85	0.865
ethyl 2-hydroxybenzoate				3.91	3.812	5-fluoropyrimidine				0.89	0.891
2-hydroxybenzamide				0.62	0.538	2-chloropyrimidine				1.16	1.197
4-hydroxy-3-methoxybenzaldehyde				1.42	1.501	5-chloropyrimidine				1.43	1.398
4-hydroxypropriophenone				0.71	0.692	2-bromopyrimidine				1.35	1.328
4-hydroxyacetanilide				-1.60	-1.552	5-bromopyrimidine				$1.65{ }^{\prime}$	1.586
1-naphthol	5.63	7.13	7.272	1.50	1.764	2-methoxypyrimidine				1.28	1.173
2-naphthol	5.95	7.69	7.423	1.74	1.617	2-ethoxypyrimidine				1.77	1.68
benzyl alcohol	4.86	5.82	5.801	0.96	0.783	5-ethoxypyrimidine				1.59	1.513
4-methylbenzyl alcohol				1.83	1.233	methyl 2-pyrimidinecarboxylate				0.73	0.638
2-hydroxybenzyl alcohol				-0.51	-0.378	methyl 5-pyrimidinecarboxylate				1.55	1.419
2-phenylethanol	4.98	6.29	6.33	1.31	1.371	ethyl 2-pyrimidinecarboxylate				1.13	1.038
ephidrine				1.10	1.346	antipyrine				$1.45{ }^{\prime}$	1.358
thiophenol	1.87	5.58	4.855	3.71	3.022	N, N-dimethylpiperazine				$-0.20{ }^{\prime}$	0.525
phenyl methyl sulfide	2.00	4.38		2.38	3.38	1,2,4-triazole				-2.42^{\prime}	-2.295

Table 2-(Continued)

compound name	$\log L^{W a}$	$\log L^{\text {chib }}$		$\log P_{\text {chl }}{ }^{\text {c }}$		compound name	$\log L^{\text {Wa }}$	$\log L^{\text {chlb }}$		$\log P_{\text {chl }}{ }^{\text {c }}$	
		obsd	calcd	obsd	calcd			obsd	calcd	obsd	calcd
purine				-1.95	-1.858	thiophene	1.04	4.22	3.447	3.18	2.383
adenine				-2.48	-2.363	thiazole				1.03	1.116
morpholine	5.26	4.93	5.393	-0.33	-0.207	digitoxin				2.40	2.481
N -methylmorpholine	4.64	5.10	5.341	0.46	0.614	phenylurea				-0.68	-0.655
scopolamine				1.64	1.734	1-phenyl-3,3-dimethylurea				$1.29{ }^{\prime}$	1.138
uracil				-1.70	-1.628	barbituric acid				-2.10	-2.026
1,3-dimethyluracil				0.52	0.442	5-methyl-5-ethylbarbituric acid				-0.72	-0.325
theophylline				-0.48	-1.269	5,5-diethylbarbituric acid				-0.15^{\prime}	0.246
theobromine				$-0.43{ }^{\prime}$	-1.279	5-ethyl-5-propylbarbituric acid				0.30	0.836
caffeine				1.23	1.079	5-ethyl-5-(2-pentyl)barbital				1.59	1.857
guanine				-3.25	-3.122	5-allyl-5-ethylbarbital				0.64	0.302
codeine				2.20	1.918	5-ethyl-5-phenylbarbital				0.65	0.721

[^1]Table 3-Descriptors for Some Solutes

solute	R	π	α	β	V_{x}
9-fluorenone	1.37	0.91	0.00	0.63	1.3722
acetanilide	0.87	1.36	0.46	0.69	1.1137
phthalimide	1.18	2.09	0.40	0.42	1.0208
ephidrine	0.92	0.65	0.20	1.24	1.4385
atropine	1.19	1.94	0.36	1.64	2.2820
1,2,4-triazole	0.72	0.98	0.60	0.77	0.4952
scopoloamine	1.07	1.45	0.28	0.71	2.2321
caffeine	1.50	1.60	0.00	1.33	1.3632
codeine	1.78	1.95	0.33	1.78	2.2057
digitoxin	4.50	5.60	1.47	4.52	5.6938

$\log L^{c h l}$ values, because the values of $\log L^{w}$ required in order to obtain $\log \mathrm{L}$ chl from $\log \mathrm{P}_{\text {chl }}$ via eq 2 were unavailable. Descriptors for most of the compounds have been published before, ${ }^{19,20,24,26-45}$ but some new values are in Table 3.

Analysis of $\log L^{\text {chl }}$-The 150 values of $\log L^{\text {chl }}$ in Table 2 cover quite a good range of compound type, from inorganic gases such as hydrogen to organic molecules such as triethyl phosphate and benzamide, with a total range of $9.4 \log$ units in $\log L^{\text {chl }}$. When regressed according to eq 4, the $150 \log \mathrm{~L}$ chl values yielded the statistically very good eq 6, considering that the experimental uncertainty in log $L^{\text {chl }}$ must be not less than 0.1 log units. The calculated log $L^{\text {chl }}$ values from eq 6 are given in Table 2.

$$
\begin{align*}
& \log L^{\text {chl }}=\underset{3.19}{0.168-\underset{-6.46}{0.595 R_{2}}+1.256 \pi_{2}{ }^{H}+\underset{14.13}{0.280 \Sigma} \alpha_{2}^{H}+} \\
& 1.370 \Sigma \beta_{2}{ }^{\mathrm{H}}+\underset{41.82}{0.981} \log \mathrm{~L}^{16} \tag{6}\\
& 14.3941 .82 \\
& n=150, s d=0.23, r^{2}=0.985, r^{2}{ }_{c v}=0.984, F=1919
\end{align*}
$$

In eq 6, $r^{2}{ }_{c v}$ is the cross-validated squared correlation coefficient; the t-ratio for each coefficient is given below the coefficient. The correlation matrix in r^{2} is given below,

	R_{2}	$\pi_{2}{ }^{H}$	$\sum \alpha_{2}{ }^{H}$	$\sum \beta_{2}{ }^{H}$
$\pi_{2}{ }^{H}$	0.591			
$\sum \alpha_{2}{ }^{H}$	0.051	0.108		
$\sum \beta_{2}{ }^{H}$	0.005	0.042	0.006	
$\log L^{16}$	0.677	0.599	0.077	0.019

There are three pairs of coefficients that have rather high cross-correlations, but it must be stressed that we have not

Table 4-Coefficients in Eq 4 for the Solubility of Gases and Vapors in Solvents, as $\log L$ Values at 298 K

solvent	c	c	c	a	b	l
chloroform $_{\text {water }}$ 24	0.17	-0.60	1.26	0.28	1.37	0.981
methanol46 $^{\text {26 }}$	-1.27	0.82	3.74	3.90	4.80	-2.13
ethanol 47	0.00	-0.22	1.17	3.70	1.43	0.769
1,2-dichloroethane 48	0.01	-0.21	0.79	3.63	1.31	0.853
benzene 48	0.01	-0.15	1.44	0.65	0.74	0.936
hexadecane	0.11	-0.31	1.05	0.47	0.17	1.020
	0.00	0.00	0.00	0.00	0.00	1.000

Table 5-Some Measures of the Hydrogen-Bond Acidity of Solvents

solvent	AN^{49}	α^{49}	α^{50}	α^{51}	$\Delta_{\text {acid }} \mathrm{H}^{51}$	$b^{\text {a }}$
water	54.8	1.17	1.17	1.16	-10.60	4.81
methanol	41.3			1.09	-11.15	1.43
ethanol	37.1	0.86	0.83	0.88	-9.14	1.31
chloroform	23.1	0.20	0.44		-5.60	1.37
cyclohexane	0.0	0.00	0.00	0.00	2.10	0.00

${ }^{a}$ The b-coefficient in eq 4.
designed the data set; we have had to use the available data. The sd value of only 0.23 log units suggests that eq 6 could be useful for the estimation of further values of log Lchl. However, the importance of eq 6 lies also in the information that can be extracted from the coefficients in the equation. As outlined above, these coefficients are related to definite chemical properties of the condensed solvent phase. To put these coefficients in context, especially the b-coefficient, we summarize in Table 4 the corresponding coefficients for some other solvent phases. ${ }^{24,43-45}$ The r-coefficient in eq 6 is not exceptional and seems to be related, at least in part, to lone pair-lone pair repulsion. The s-coefficient is a measure of the solvent dipolarity/polarizability; the rather large coefficient for chloroform is clearly due to polarizability effects, just as for 1,2-dichloroethane. The a-coefficient, a measure of solvent hydrogen-bond basicity, is very low, as expected, but the b-coefficient indicates that bulk chloroform can act as a hydrogen-bond acid. However, the magnitude of the b-coefficient (1.37) is of the same order as that for methanol (1.43) ${ }^{46}$ and ethanol $(1.31)^{47}$ solvents, so that to external solutes chloroform is as strong a hydrogen-bond acid as are the alcohols. We give in Table 5 some previous measures of the hydrogen-bond acidity of bulk chloroform; the acceptor number (AN), ${ }^{49}$ the solvatochromic α-value, ${ }^{50,51}$ and the enthal pic $\Delta_{\text {acid }} H$ scale. ${ }^{51}$ N one of these scales ranks

Table 6-Factors That Influence the Solubility of Gases and Vapors in Chloroform and in Water at 298 K

solute	$r R_{2}$	$S \pi_{2}{ }^{\text {H }}$	$a \sum \alpha_{2}{ }^{\mathrm{H}}$	$b \sum \beta_{2}{ }^{\text {H }}$	$1 \log L^{16}$	disp	total ${ }^{\text {a }}$
					cav		
Solvent Chloroform							
methane	0.00	0.00	0.00	0.00	-2.38	2.06	-0.15
ethanol	-0.15	0.53	0.10	0.66	-3.31	4.77	2.77
butanone	-0.10	0.88	0.00	0.70	-4.19	6.43	3.89
hexane	0.00	0.00	0.00	0.00	-4.85	7.47	2.79
Solvent Water							
methane	0.00	0.00	0.00	0.00	-4.04	4.11	-1.34
ethanol	0.20	1.15	1.44	2.31	-5.81	5.49	3.51
butanone	0.14	1.92	0.00	2.46	-7.50	7.01	2.76
hexane	0.00	0.00	0.00	0.00	-8.78	8.21	-1.84

[^2]chloroform as acidic as alcohols, although it must be noted that only the $\Delta_{\text {acid }} \mathrm{H}$ scale is based on a thermodynamic property, the enthal py, in contrast to the b-coefficient that is related to Gibbs energy. The l-coefficient in eq 4 can be regarded as a measure of the solvent hydrophobicity; chloroform is not exceptional, with an I-coefficient close to those for benzene or hexadecane.
F rom the coefficients of eq 6 and solute descriptors, it is possible to dissect the observed $\log \mathrm{L}$ chl value for any given solute into contributions from the various terms in eq 6. However, the I $\log \mathrm{L}^{16}$ term includes two opposing effects: (i) an endoergic cavity term that arises through disruption of solvent-solvent interactions, and which will make a negative contribution to $\log \mathrm{L},{ }^{16}$ and (ii) an exoergic term due to London dispersion solute-solvent interactions, and which will make a positive contribution to I $\log \mathrm{L} .{ }^{16}$ Indeed, as we have pointed out, ${ }^{24,32,52}$ the London interaction term is nearly always larger than any specific solute-solvent interaction involving nonionic solutes.

We can make some headway by calculating the cavity term using scaled particle theory (SPT), ${ }^{53}$ and then obtaining the London dispersion term by difference. Even an approximate estimation will suffice to show general trends, and as noted before, ${ }^{13}$ there may be a number of possible divisions of experimental $\log \mathrm{L}$ values into various contributions. To apply SPT we need to know the solvent hardsphere diameter, σ_{1}, and Lennard-J ones potential, $\epsilon_{1} / \mathrm{k}$. We calculated these from $\log \mathrm{L}$ chl for nonpolar sol utes, as indicated before, ${ }^{54}$ and obtained values of $4.80 \AA$ and 320 K , respectively. Then taking σ_{2} as 3.82 (methane), 6.03 (hexane), 4.75 (ethanol), and 5.51 (butanone) for representative solutes, we can calculate the cavity term (Cav) and deduce the dispersion term (Disp) as [Disp $=1 \log \mathrm{~L}^{16}-$ Cav]. For comparison, we have done the same for solvent water using eq $7,{ }^{24}$ with σ_{1} taken as $2.77 \AA$. ${ }^{53}$ Results are in Table 6. Note that our calculation refers to the separation of cavity and dispersion effects in the I $\log \mathrm{L}^{16}$ term only. The constant term, which is appreciably more negative for solvent water than for any nonaqueous sol vent, may also contain some cavity/dispersion contribution.

$$
\begin{array}{r}
\log L^{w}=-1.271+0.822 \mathrm{R}_{2}+2.743 \pi_{2}^{\mathrm{H}}+3.904 \Sigma \alpha_{2}^{\mathrm{H}}+ \\
4.814 \Sigma \beta_{2}^{\mathrm{H}}-0.213 \log \mathrm{~L}^{16}(7) \tag{7}
\end{array}
$$

In chloroform, the solute-solvent dispersion term, that increases with increase in solute size, outweighs the various specific interaction terms. This is not unique to chloroform solvent, but is the case for all the nonaqueous solvents we have investigated. The specific interaction
terms merely discriminate between solutes of about the same size and hence of about the same cavity/dispersion effect. Thus butanone is more soluble than hexane, even though it is somewhat smaller. In any homol ogous series, with a constant functionality, log Lodl increases with carbon number because the positive dispersion effect increases faster than the negative cavity effect. However $\log \mathrm{L}^{w}$ decreases al ong any homol ogous series because the positive dispersion effect now increases slower than the cavity effect.
In summary, application of the MLR eq 4 to the 150 log Lchl values yields eq 6 that can be used for the prediction of further values and can be used to quantify the various sol ute and sol vent factors that influence the magnitude of $\log \mathrm{L}$ chl.
Analysis of $\log \mathbf{P c h}_{\text {ch }}-$ Table 2 contains 335 values of \log P chl , enough to divide into a training set and a test set for the purpose of assessing the predictive capability of any MLR equation. We arbitrarily removed 10% of all the log $P_{\text {chl }}$ values to leave 302 as a training set. Application of eq 5 to this set yielded eq 8, where again the t-scores are given below the coefficients.

$$
\begin{align*}
& \log \mathrm{P}_{\text {chl }}=\underset{5.87}{0.321}+\underset{2.59}{0.168 \mathrm{R}_{2}}-\underset{-5.94}{0.379} \tau_{2}{ }^{\mathrm{H}}- \\
& \underset{-52.04}{3.170} \Sigma \alpha_{2}{ }^{\mathrm{H}}-{ }_{-52.00}^{3.409} \Sigma \beta_{2}{ }^{\mathrm{H}}+{ }_{5}^{4.149 \mathrm{~V}_{\mathrm{X}}} \tag{8}\\
& \mathrm{n}=301, \mathrm{sd}=0.28, \mathrm{r}^{2}=0.965, \mathrm{r}^{2}{ }_{\mathrm{c}}=0.963, \mathrm{~F}=1635
\end{align*}
$$

The correlation matrix for eq 8 is,

	R_{2}	$\pi_{2}{ }^{\mathrm{H}}$	$\sum \alpha_{2}{ }^{\mathrm{H}}$	$\Sigma \beta_{2}{ }^{\mathrm{H}}$
$\pi_{2}{ }^{\mathrm{H}}$	0.539			
$\sum \alpha_{2}{ }^{\mathrm{H}}$	0.077	0.067		
$\sum \beta_{2}{ }^{\mathrm{H}}$	0.075	0.234	0.004	
$\mathrm{~V} x$	0.312	0.278	0.010	0.251

The statistics of eq 8 are not as good as those for many other water-solvent partitions, ${ }^{19}$ but we have already referred to the difficulty of the experimental measurement of $\log \mathrm{P}_{\mathrm{ch}}$ values. The predictive capability of eq 8 can be assessed by the calculation of $\log \mathrm{P}_{\text {ch }}$ for the 34 compounds left out as a test set. These are in Table 7 together with the predicted and observed values of $\log \mathrm{P}_{\text {chl }}$. Over a range of $6 \log$ units in $\log P_{\text {cl }}$ the sd between predicted and observed values is only 0.17 log unit; the average unsigned error is $0.13 \log$ unit, and the average signed error is -0.03 \log unit. As shown in Figure 1, there are no systematic deviations. N one of the other computational or calculational methods summarized in Table 1 employed a test set of compounds to estimate predictive power, so that comparisons are not possible.

Once the predictive power of eq 8 is established, we can use all the available data to construct eq 9 . The differences between eq 8 and eq 9 are marginal, but the latter equation is preferred since it covers more compounds, with $\log \mathrm{P}_{\mathrm{ch}}$ covering a range of over nine log units, from -3.25 (guanine) to 6.01 (octane). The calculated values of $\log \mathrm{P}_{\mathrm{ch}}$ on eq 9 are given in Table 2.

$$
\begin{aligned}
& \log \mathrm{P}_{\text {chl }}=\underset{8.57}{0.327}+\underset{2.86}{0.157 \mathrm{R}_{2}}-\underset{-7.17}{0.391} \pi_{2}^{\mathrm{H}}- \\
& 3.191 \Sigma \alpha_{2}^{H}-3.437 \Sigma \beta_{2}^{H}+4.191 V_{x} \\
& \begin{array}{llll}
-61.93 & -61.23 & 72.40
\end{array} \\
& \mathrm{n}=335, \mathrm{sd}=0.25, \mathrm{r}^{2}=0.971, \mathrm{r}^{2}{ }_{\mathrm{c}}=0.970, \mathrm{~F}=2223
\end{aligned}
$$

The correlation matrix of eq 9 is very similar to that of eq 8. The interpretation of eq 9 fol lows closely that of eq 6 ,

Table 7-Predicted Values from Eq 8 and Observed Values of $\log P_{\text {chl }}$ for the 33 Compound Test Set

compound	predicted	observed
cyclohexane	3.87	4.16
bromoethane	2.18	2.24
propyl acetate	2.28	2.56
ethyl trifluoroacetate	1.94	2.00
diethylamine	0.85	0.79
formic acid	-2.03	-2.12
hexanoic acid	0.98	1.02
2-methylpropan-2-ol	0.26	-0.02
propane-1,3-diol	-2.60	-2.90
triethyl phosphate	2.14	2.28
fluorobenzene	2.90	2.54
benzaldehyde	2.38	2.25
dimethyl phthalate	2.86	3.09
aniline	1.28	1.35
1-naphthylamine	2.46	2.60
4-nitroanisole	3.16	3.18
phthalimide	1.25	1.46
2-bromobenzoic acid	0.96	0.91
4-aminobenzoic acid	-0.88	-0.92
3-phenylpropanoic acid	1.16	1.20
2-ethylphenol	1.63	1.73
2-iodophenol	2.00	1.97
2-nitrophenol	2.62	2.53
methyl 2-hydroxybenzoate	3.16	3.15
benzyl alcohol	0.79	0.96
methyl phenyl sulfone	1.93	1.93
3-methylbenzenesulfonamide	0.42	0.32
2-bromopyridine	2.37	2.22
quinoline	2.66	3.14
pyrazine	0.62	0.59
2-(dimethylamino)pyrimidine	1.91	1.99
5-chloropyrimidine	1.39	1.43
antipyrine	2.57	1.45
digitoxin	2.40	

Figure 1-A plot of observed $\log P_{\text {ch }}$ vs predicted $\log P_{\text {ch }}$ values on eq 8. except that now the coefficients refer to differences in properties of chloroform and water. A comparison with coefficients for other water-solvent partitions ${ }^{19,20}$ is in Table 8. The c- and r-coefficients are not exceptional. The s-coefficient refers to the difference in dipolarity/polarizability of chloroform and water; a value of -0.39 places chloroform between $\mathrm{CCl}_{4}(-1.15)$ and 1,2-dichloroethane (0.00) or dichloromethane (0.02). The hydrogen-bond basicity of bulk chloroform, as indicated by eq 6, is very small; hence, the a-coefficient in eq 9 is very negative (-3.19) and approaches that for the systems with nonbasic solvents such as hexadecane, cyclohexane, and CCl_{4}. In view of our discussion, above, on the hydrogen-bond acidity of chloroform, the b-coefficient in eq 9 is of some interest. A value of -3.43 places chloroform as acidic as wet octanol (-3.46), exactly in line with the b-coefficients in Table 4, and much more acidic than dichloromethane ($\mathrm{b}=-4.14$) or 1,2-

Table 8-Coefficients in Eq 5 for Water-Solvent Partitions

solvent	c	r	S	a	b	V
hexadecane ${ }^{\text {a }}$	0.09	0.67	-1.62	-3.59	-4.87	4.43
cyclohexane ${ }^{\text {a }}$	0.13	0.82	-1.73	-3.78	-4.90	4.65
benzene ${ }^{\text {b }}$	0.02	0.49	-0.60	-3.01	-4.63	4.59
nitrobenzene ${ }^{\text {b }}$	-0.18	0.58	0.00	-2.36	-4.42	4.26
decanol, wet ${ }^{\text {c }}$	0.01	0.48	-0.97	0.02	-3.80	3.95
octanol, wet ${ }^{\text {a }}$	0.09	0.56	-1.05	0.03	-3.46	3.81
isobutanol, wet ${ }^{\text {c }}$	0.23	0.51	-0.69	0.02	-2.26	2.78
olive oild	0.01	0.58	-0.80	-1.47	-4.92	4.17
dibutyl ether ${ }^{\text {d }}$	0.18	0.82	-1.50	-0.83	-5.09	4.69
$\mathrm{CCl}_{4}{ }^{\text {b }}$	0.22	0.56	-1.15	-3.51	-4.54	4.50
1,2-dichloroethane ${ }^{\text {b }}$	0.16	0.12	0.00	-3.05	-4.29	4.30
dichloromethane	0.31	0.00	0.02	-3.24	-4.14	4.26
chloroform	0.32	0.16	-0.39	-3.19	-3.43	4.19

${ }^{a}$ Reference 43. ${ }^{b}$ Reference 19a. ${ }^{c}$ Reference 48. ${ }^{d}$ Reference 20.
Table 9-Calculated and Observed $\log P_{\text {chl }}$ Values for Some Solutes Previously Studied

solute	calcd $^{11 a}$	calcd $^{11 b}$	calcd 14	calcd $^{13 c}$	calcd d	obsd e
MeNH_{2}	-0.56	-0.35	-0.33	-1.2	-0.88	-1.02
$\mathrm{Me}_{2} \mathrm{NH}$			0.85		-0.27	-0.44
$\mathrm{Me}_{3} \mathrm{~N}$			2.25		0.61	0.51
$\mathrm{Et}_{2} \mathrm{NH}$	2.79	2.09		1.4	0.86	0.79
benzene	4.30	3.20	2.71	2.8	2.78	2.76
MeOAc			0.33		1.08	1.16
4-hexylpyridine	5.38	3.99		4.7	4.47^{f}	5.00^{g}

${ }^{a}$ Untrained computations. ${ }^{b}$ Trained computations. ${ }^{c}$ SM5.4P; the SM5.4A results are very similar. ${ }^{d}$ On eq 9, this work. ${ }^{e}$ Table 2. ${ }^{\text {t }}$ Not part of the 335 data set. ${ }^{g}$ Not corrected for salting-out; see text.

Table 10-Calculated and Observed $\log P_{\text {chl }}$ Values for Solutes Not Included in Eq 9

solute	calcd a	calcd b	obsd
hydroquinone	-2.18	-1.54	0.23
cocaine	4.26	6.67	1.21
hydrocortisone	2.21	3.67	0.81

${ }^{a}$ This work. ${ }^{b}$ As in ref 13 (see text).
dichloroethane ($b=-4.29$). The v-coefficient in eq 5 , just as the I-coefficient in eq 4, can be regarded as a measure of the solvent hydrophobicity. Chloroform is no different to most non-hydroxylic solvents which have v-coefficients between 4.2 and 4.6 units.

It is possible to analyze eq 9 term-by-term in order to quantify the particular interactions leading to $\log P_{\text {chl }}$ values for a given solute, just as we have done for $\log \mathrm{L}$ chl in Table 6, but the arithmetic is trivial. We conclude by examining a number of solutes for which $\log P_{\text {chl }}$ has not been well calculated by previous methods or by eq 9 . The experimental values of $\log P_{\text {chl }}$ for aliphatic amines have been questioned ${ }^{11,14}$ on the grounds that protonation in the aqueous phase could lead to erroneously low values. In Table 9 we collect observed and calculated $\log \mathrm{P}_{\text {chl }}$ values for the aliphatic amines noted before. Values calculated through eq 9 are in good agreement with the observed values, and in our view the experimental $\log P_{\text {ch }}$ values must be substantially correct. Other workers ${ }^{13}$ also calculate values reasonably close to those observed. Values of $\log \mathrm{P}_{\text {chl }}$ for benzene ${ }^{11}$ and methyl acetate ${ }^{14}$ are also poorly computed, Table 9, but again our procedure suggests that the observed values are correct. We did find that there were three $\log \mathrm{P}_{\text {chl }}$ values that were considerable outliers to eq 9, and which we omitted in the regression analysis; these outliers are shown in Table 10.

We can check our descriptors for hydroquinone, because values of $\log P$ are available ${ }^{21}$ for many water-solvent partition systems for which we have ${ }^{19}$ the coefficients in

Table 11-Water-Solvent Partitions (P) and HPLC Capacity Factors (K) for Hydroquinone

solvent	$\log P$ or $\log K$		
	obsd	calcd ${ }^{\text {a }}$	calcd $^{\text {b }}$
octanol (P)	0.59	0.77	0.58
isobutanol (P)	0.82	0.99	0.88
hexanol (P)	0.74	1.00	0.81
cyclohexane (P)	$-3.97{ }^{\text {c }}$	-4.19	-4.11
toluene (P)	-2.15	-2.61	-2.37
heptane (P)	$-4.26{ }^{\text {d }}$	-4.07	-4.00
diethyl ether (P)	$0.39{ }^{\text {e }}$	0.34	0.18
dibutyl ether (P)	-0.77	-0.55	-0.73
diisopropyl ether (P)	0.02^{f}	0.15	-0.03
ethyl acetate (P)	0.79	0.88	0.61
butyl acetate (P)	$0.66{ }^{9}$	0.88	0.85
1,2-dichloroethane (P)	$-1.61{ }^{\text {h }}$	-2.00	-1.64
tetrachloromethane (P)	$-3.30{ }^{i}$	-3.38	-3.21
ref 67, 50\% methanol (K)	-0.84	-0.43	-0.55
ref 67, 75% methanol (K)	-1.42	-1.03	-1.09
ref 68, 60\% methanol (K)	-1.11	-0.94	-0.99
ref 68, 75% methanol (K)	-1.46	-1.28	-1.31
ref 68, 90\% methanol (K)	-1.81	-1.42	-1.52
ref 69, Column B (K)	-1.10	-1.15	-1.09
ref 70, Column A (K)	-0.60	-0.56	-0.55
ref 70, Column B (K)	-0.62	-0.60	-0.58
ref 70, Column C (K)	-0.77	-0.72	-0.71
ref 46a, 40\% methanol (K)	-0.51	-0.38	-0.47
ref 46a, 50\% methanol (K)	-0.57	-0.54	-0.60
ref 46a, 60\% methanol (K)	-0.70	-0.66	-0.73
ref 46a, 60\% methanol (K)	-0.75	-0.79	-0.85
ref 46a, 80\% methanol (K)	-0.75	-0.87	-0.92
ref 46a, 30\% acetonitrile (K)	-0.46	-0.45	-0.47
ref 46a, 40\% acetonitrile (K)	-0.37	-0.50	-0.52
ref 46a, 50\% acetonitrile (K)	-0.46	-0.62	-0.63
ref 46a, 60\% acetonitrile (K)	-0.60	-0.69	-0.71
ref 46a, 70\% acetonitrile (K)	-0.69	-0.79	-0.80
ref 46a, 80\% acetonitrile (K)	-0.85	-0.85	-0.87
sd ($n=33$):		0.20	0.15
benzene (P)	0.15		
benzene (P)	-1.85	-2.58	-2.29
benzene (P)	-2.16		
chloroform	0.23	-2.18	-1.84

${ }^{a}$ With original descriptors: $R_{2}=1.063, V_{x}=0.8338, \pi_{2}{ }^{H}=1.00, \sum \alpha_{2}{ }^{H}$ $=1.16$, and $\Sigma \beta_{2}{ }^{H}=0.60$. ${ }^{b}$ With "best value" descriptors: $R_{2}=1.063, V_{x}=$ $0.8338, \pi_{2}{ }^{H}=1.25, \Sigma \alpha_{2}{ }^{H}=1.05$, and $\Sigma \beta_{2}{ }^{H}=0.58$. ${ }^{\circ}$ Average of -3.89 and -4.04 . ${ }^{d}$ Average of -4.24 and -4.28 ; another value is 0.05 . ${ }^{e}$ Average of $0.36,0.37,0.38$, and $0.46 .{ }^{\dagger}$ Average of $-0.13,0.01,0.01$, and 0.20 . ${ }^{h}$ Another value is 0.32 . ${ }^{i}$ Another value is 0.04 .
eq $5(\log S P=\log P)$. In addition, values of the HPLC capacity factor, k^{\prime}, are known for hydroquinone in systems for which we have again the coefficients in eq 5 (logSP = $\log k^{\prime}$), see Table 11. ${ }^{372,57-59}$ Our original descriptors for hydroquinone reproduce the $\log \mathrm{P}$ and $\log \mathrm{k}^{\prime}$ values for 33 systems with an sd of 0.20 units. We can calculate the set of descriptors that best reproduces the $33 \log \mathrm{P}$ and $\log \mathrm{k}^{\prime}$ values, with an sd value of only 0.15 units, but there is not much difference between the two sets of descriptors, Table 11. In either case, the calculated $\log \mathrm{P}_{\text {chl }}$ value (-2.18 and -1.84) is over two log units smaller than the observed value (0.23). We have to conclude that the experimental value is in error. Such discrepancies are not uncommon, thus $\log P$ for hydroquinone in water-benzene is given ${ }^{21}$ as $-2.16,-1.85$, and 0.15 , and $\log P$ in water-heptane is given as $-4.28,-4.24$, and 0.05 !

In the case of cocaine, only six $\log P$ values are available ${ }^{21}$ as a check. Our present descriptors reproduce these with an sd value of 0.45 units, and the best fit we can obtain still results in an sd value of 0.38 units, see Table 12. However, either set of descriptors leads to a calculated log

Table 12-Water-Solvent Partitions for Cocaine

solvent	$\log P$		
	obsd	calcd $^{\text {a }}$	calcd b
octanol	2.30	2.40	2.43
diethyl ether	1.52^{c}	1.54	1.80
diisopropyl ether	1.19	1.50	1.68
olive oil	2.33	1.44	1.85
ethyl acetate	2.00	2.07	1.97
hexane	0.91	0.60	0.54
sd	1.21^{d}	0.45	0.38
chloroform	4.26	4.63	

${ }^{a}$ With original descriptors: $R_{2}=1.355, V_{x}=2.2977, \pi_{2}{ }^{H}=1.92, \Sigma \alpha_{2}{ }^{H}$ $=0.00$, and $\Sigma \beta_{2}{ }^{H}=1.50 .{ }^{b}$ With "best value" descriptors: $R_{2}=1.355, V_{x}=$ 2.2977, $\tau_{2}{ }^{H}=2.44, \Sigma \alpha_{2}{ }^{H}=0.00$, and $\Sigma \beta_{2}{ }^{H}=1.33$. ${ }^{\circ}$ Average of values 1.15, 1.28, and 2.14. ${ }^{d}$ Average of values 1.04 and 1.38 .

Table 13-Water-Solvent Partitions (P) and HPLC Capacity Factors (K) for Hydrocortisone

solvent	$\log P$ or log K		
	obs		calc a
octanol (P)	1.68^{c}	1.67	1.60
isobutanol (P)	1.74	2.33	2.24
diethyl ether (P)	0.16^{d}	0.35	-0.06
ethyl acetate (P)	1.09	0.98	1.06
benzene (P)	-0.49	0.61	-0.46
ref 67 50\% methanol (K)	0.69	0.57	0.60
ref 67 75\% methanol (K)	-0.31	-0.49	-0.48
ref 71 IAM column (K)	0.94	1.05	0.99
sd		0.49	0.22
hexadecane (P)	-2.04	-3.60	-4.09
chloroform (P)	0.81	2.21	1.27

${ }^{a}$ With original descriptors: $R_{2}=2.03, V_{x}=2.7976, \pi_{2}{ }^{H}=3.49, \Sigma \alpha_{2}{ }^{H}=$ 0.71 , and $\Sigma \beta_{2}{ }^{H}=1.90$. ${ }^{b}$ With "best value" descriptors: $R_{2}=2.03, V_{x}=$ 2.7976, $\pi_{2}{ }^{\mathrm{H}}=2.77, \Sigma \alpha_{2}{ }^{\mathrm{H}}=0.85$, and $\Sigma \beta_{2}{ }^{\mathrm{H}}=2.13$. ${ }^{\circ}$ Average of 1.53 and 1.81. ${ }^{d}$ Average of $0.11,0.15,0.18$, and 0.21 .
$P_{\text {chl }}$ value over 3 log units greater than that recorded. ${ }^{21}$ We have no explanation other than that the experimental value is in error. It is worth noting that lipophilic strong bases are very difficult to study by the "shake-flask" method.

The number of water-solvent $\log P$ values for hydrocortisone is surprisingly small, but a few log k^{\prime} values are available in calibrated HPLC systems, ${ }^{57,60}$ see Table 13. Our usual descriptors lead to an sd value of 0.49 units, rather large but not unreasonable, and to a discrepancy of $1.4 \log$ units in $\log \mathrm{P}_{\text {chl }}$. We can define a set of descriptors that leads to an sd value of 0.22 for the same eight systems and to a smaller discrepancy of only 0.45 log units in log $\mathrm{P}_{\text {chl }}$. It is thus possible that in the case of hydrocortisone there is some error in the experimental $\log \mathrm{P}_{\text {chl }}$ value combined with errors in our assigned descriptors.

In an attempt to resolve these problems, Dr. Cramer kindly calculated $\log \mathrm{P}_{\text {chl }}$ for the three outliers using his computational method. ${ }^{13}$ Results are in Table 10. They seem to confirm our suggestion that the three experimental values are in error.

Finally, we can find no evidence for the suggestion ${ }^{14}$ that water-saturated chloroform may behave differently to dry chloroform as a partitioning medium. Other workers ${ }^{13}$ also regard water-saturated and dry chloroform to be essentially the same as solvating media.

Care must be taken over experimental values, however. A case in point is 4-hexylpyridine with a calculated value of $\log \mathrm{P}_{\text {chl }}$ as 3.99 with a trained computation, ${ }^{11}$ as compared to an observed value of 5.00 log units. This latter value does not refer to water-chloroform partition, but to partition between 1 M sodium chloride and chloroform. Correction for the salting-out effect would lower the value
by 0.15 to 0.55 , leading to an "experimental" value of 4.85 to 4.45 , more in line with the computational value of $3.99,{ }^{11}$ and in good agreement with another computational value ${ }^{13}$ of 4.7 and our calculated value of 4.47 through eq 9.

Our data set of 335 compounds therefore leads to a MLR eq 9 that from a training set of 301 compounds seems capable of predicting further $\log \mathrm{P}_{\text {chl }}$ values with $\mathrm{sd}=0.17$. Equation 9 can also be used to analyze the solute and solvent interactions that affect $\log \mathrm{P}_{\text {chl }}$, with results almost identical to those obtained by an analysis of log L chl through eq 6. The importance of these results lies in the recent use of the water-chloroform system as a measure of solute lipophilicity, ${ }^{5,6,11,12}$ and of recent calculations of the transfer of nudeic acids from water to chloroform. ${ }^{9,61}$ The nucleic acid transfers have been analyzed in terms of functional group contributions, ${ }^{61}$ but a breakdown into contributions due to dipolarity/pol arizability, hydrogen-bond acidity, etc., through eq 9 , leads to more information as to the exact solute influences on the water-chloroform partitions.

Furthermore, if the water-chloroform system is to be generally used as a measure of solute lipophilicity in drug design, it will be of very considerable help to have a predictive procedure available. We have shown, see Table 1, that the MLRA method is capable of correlating $\log \mathrm{P}_{\mathrm{ch}}$ values rather better than computational methods, although the present MLRA method suffers from the possible lack of availability of the required descriptors. Recently, we have remedied this deficiency through a simple method (ABSOLVE) for the calculation of descriptors from structure. ${ }^{62}$ Together with eq 6 and eq 9 the ABSOLVE method will enable $\log L_{\text {chl }}$ and $\log P^{c h l}$ to be predicted from structure.

References and Notes

1. (a) Hansch, C. A Quantitative Approach to Biochemical Structure-Activity Relationships. Acc. Chem. Res. 1969, 2, 232-239. (b) Hansch, C. Quantitative Structure-ActivityRelationships and the Unnamed Science. Acc. Chem. Res. 1993, 20, 147-153. (c) Meyer, P.; Maurer, G. Correlation and Prediction of Partition Coefficients of Organic Solvents between Water and an Organic Solvent with a Generalized Form of the Linear Solvation Energy Relationship. Ind. Eng. Chem. Res. 1995, 34, 373-381.
2. (a) Hansch, C.; Maloney, P. P.; Fujita, T.; Muir, R. M. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature(London) 1962, 194, 178-180. (b) Leo, A. Calculating $\log \mathrm{P}$ (oct) from Structures. Chem. Rev. 1993, 30, 1283-1306.
3. Lipophilicity in Drug Action and Toxicology; Pliska, V.,Testa, B., van de Waterbeemd, H., Eds.; VCH: Weinheim, 1996.
4. (a) Overton, E. Studien uber die Narkose; Fischer: J ena, Germany, 1901. (b) Macy, R. Partition Coefficients of Fifty Compounds between Olive Oil and Water at $20^{\circ} \mathrm{C}$. J . Indust. HygieneToxicol. 1948, 30, 140-143. (c) Ren, S.; Das, A.; Lien, E.J. QSAR Analysis of Membrane Permeability to Organic Compounds. J. Drug Targeting 1996, 4, 103.
5. Caron, G.; Carrupt, P.-A.; Testa, B.; Ermondi, G.; Gasco, A. Insight Into the Lipophilicity of the Aromatic N -Oxide Moeity. Pharm. Res. 1996, 13, 1186-1190.
6. Shih, P.; Pedersen, L. G.; Gibbs, P. R.; Wolfenden, R Hydrophobicities of the Nucleic Acid Bases: Distribution Coefficients from Water to Cyclohexane. J. Mol. Biol. 1998, 280, 421-430.
7. (a) Leahy, D. E.; M orris, J J .; Taylor, P. J .; Wait, A. R. Model Solvent Systems for QSAR. 3. An LSER Analysis of the Critical Quartet - New Light on Hydrogen Bond Strength and Directionality. J. Chem. Soc. Perkin Trans. 2 1992, 705722. (b) Leahy, D. E.; M orris, J. J.; Taylor, P. J .; Wait, A. R. Model Solvent Systems for QSAR. 2. Fragment Values for the Critical Quartet. J. Chem. Soc., Perkin Trans. 2 1992, 723-731.
8. Dunn, W. J., III.; Koehler, M. G.; Grigoras, S. The Role of Solvent-Accessible Surface-Area in Determining Partition Coefficients, J. Med. Chem. 1987, 30, 1121-1126.
9. Orozco, M.; Colominas, C.; Luque, F.J. Theoretical Determination of the Solvation Free Energy in Water and Chloroform of the Nucleic Acid Bases. Chem. Phys. 1996, 209, 19-29.
10. J orgensen, W. L.; Briggs, J. M.; Contreras, M. L. Relative Partition Coefficients for Organic Solutes from Fluid Simulations. J . Phys. Chem., 1990, 94, 1683-1686.
11. Reynolds, C. H. Estimating Lipophilicity Using the GB/SA Continuum Solvation Model - a Direct Method for Computing Partition Coefficients. J. Chem. Inf. Comput. Sci. 1995, 35, 738-742.
12. Luque, F. J.; Zhang, Y.; Aleman, C.; Bachs, M.; Gao, J .; Orozco, M. Solvent Effects in Chloroform Solution: Parametrization of the MST/SCRF Continuum Model. J . Phys. Chem. 1996, 100, 4269-4276.
13. Giesen, D. J.; Chambers, C. C.; Cramer, C. J.; Truhlar, D. G. Solvation Model for Chloroform Based on Class IV Atomic Charges. J. Phys. Chem. B 1997, 101, 2061-2069.
14. McDonald, N. A.; Carlson, H. A.; J orgensen, W. J. Free Energies of Solvation in Chloroform and Water from a Linear Response Approach. J. Phys. Org. Chem. 1997, 10, 563-576.
15. Solvation Gibbs energies are often calculated and then transformed into log Pan values. For consistency we have converted Gibbs energies into values of $\log L$, and all the errors and all the equations that we list refer to $\log L$ and $\log P$.
16. Aqvist, J.; Mowbray, S. L. Sugar Recognition by a Glucose/ Galactose Receptor - Evaluation of Binding Energetics from Molecular Dynamics Simulations. J. Biol. Chem. 1995, 270, 9978-9981.
17. The regression equation was forced through the origin, and hence the regression correlation coefficient has no meaning.
18. Marcus, Y. Linear Solvation Energy Relationships. Correlation and Prediction of the Distribution of Organic Solutes between Water and Immiscible Organic Liquids. J. Phys. Chem. 1991, 95, 8886-8891.
19. Abraham, M. H.; Chadha, H. S. In Lipophilicity in Drug Action and Toxicol ogy; Pliska, V., Testa, B., van de Waterbeemb, H., Eds.; VCH: Weinheim, 1996; p 311.
20. Pagliara, A.; Caron, G.; Lisa, G.; Fan, W.; Gaillard, P.; Carrupt, P.-A.; Testa, B.; Abraham, M.H. Solvatochromic Analysis of di-n-Butyl Ether/Water Partition Coefficients as Compared to other Solvent Systems. J . Chem. Soc., Perkin Trans. 2, 1997, 2639-2643.
21. MedChem Software, BioByte Corp., P. O.517, Claremont, CA 91711-0157.
22. (a) Solubility Data Project. (b) Park, J. H.; Hussam, A.; Cousanon, P.; Fritz, D.; Carr, P. W. Experimental Reexamination of Partition Coefficients from Rohrschneider Data Set. Anal. Chem. 1987, 59, 1970-1976.
23. (a) Thomas, E. R.; Newman, B. A.; Nicolaides, G. L.; Eckert, C. A. Limiting Activity Coefficients from Differential Ebulliometry. J. Chem. Eng. Data 1982, 27, 233-240. (b) Gerrard, W. Solubility of Hydrogen Sulphide, Dimethyl Ether, Methyl Chloride, and Sulfur Dioxide in Liquids. The Prediction of Solubility of All Gases. J. Appl. Chem. Biotechnol. 1972, 22, 623-650. (c) Dohnal, V.; Vrbka, P. Infinite-Dilution ActivityCoefficients by Comparitive Ebulliometry - Binary Systems of Chloromethanes, Chloroethanes and Freon-113. Fluid Phase Equilib. 1990, 54, 121-131.
24. Abraham, M. H.; Andonian-Haftvan, J .; Whiting, G. S.; Leo, A; Taft, R. W. Hydrogen Bonding 34. The Factors that Influence the Solubility of Gases and Vapours in Water at 298K, and a New Method for its Determination. J. Chem. Soc., Perkin Trans. 2 1994, 1777-1791.
25. Cabani, S.; Gianni, P.; Mollica, V.; Lepori, L. Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution. J. Soln. Chem. 1981, 10, 563-595.
26. Abraham, M. H. Scales of Solute Hydrogen Bonding - Their Construction and Application to Physicochemical and Biochemical Processes. Chem. Soc. Rev. 1993, 22, 73-83.
27. Abraham, M. H. Characterization of Some GLC Chiral Stationary Phases: LFER Analysis. Anal. Chem. 1997, 69, 613-617.
28. Abraham, M. H.; Walsh, D. P. Hydrogen Bonding 23. Application of the New Solvation Equation to $\log V(\mathrm{~g})$ Values for Solvents on Carbonaceous Adsorbents. J. Chromatogr. 1992, 627, 294-299.
29. Abraham, M. H.; Weathersby, P. K. Hydrogen Bonding 30. Solubility of Gases and Vapours in Biological Liquids and Tissues. J . Pharm. Sci. 1994, 83, 1450-1456.
30. Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J. Hydrogen Bonding 20. An Analysis of Polymer Probe Interactions in Some Hydrocarbon Polymers Using a new Solvation Equation. Polymer 1992, 33, 2162-2167.
31. Burg, Ph.; Selves, J.-L.; Colin, J. P. Numerical Simulation of Crude Oil Behaviour from Chromatographic Data, Anal. Chim. Acta, 1995, 317, 107-125.
32. Abraham, M. H.; Andonian-Haftvan, J.; Du, C. M.; Diart, V.; Whiting, G. S.; Grate, J. W.; McGill, R. A. Hydrogen Bonding 29. Characterization of 14 Sorbent Coatings for

Chemical Microsensors Using a New Sol vation Equation. J. Chem. Soc., Perkin Trans. 2 1995, 369-378.
33. Grate, J. W.; Abraham, M. H.; Du, C. M.; McGill, R. A. Shuely, W. S. Examination of Vapor Sorption by Fullerene, Fullerene-Coated Surface-Acoustic-Wave Sensors, Graphite, and Low-Polarity Polymers Using Linear Solvation Energy Relationships. Langmuir 1995, 11, 2125-2130.
34. Abraham, M. H.; Kumarsingh, R.; Cometto-Muniz, J. E.; Cain, W. S. An Älgorithm for Nasal Pungency Thresholds in Man. Arch. Toxicol. 1998, 72, 227-232.
35. Abraham, M. H.; Kumarsingh, R.; Cometto-Muniz, J. E.; Cain, W. S. Draize Eye Scores and Eye I rritation Thresholds in Man Combined into One Quantitative Structure-Activity Relationship. Toxicol. In Vitro 1998, 12, 403-408.
36. Abraham, M. H.; McGowan, J . C. The Use of Characteristic Volumes to Measure Cavity Terms in Reversed-Phase LiquidChromatography. Chromatographia 1987, 23, 243-246.
37. (a) Abraham, M. H.; Chadha, H. S.; Leo, A. J. Hydrogen Bonding 35. Relationship between High-Performance LiquidChromatography Capacity Factors and Water-Octanol Partition Coefficients. J. Chromatogr. 1994, 685, 203-211. (b) J ackson, P.T.; Schure, M.R.; Weber, T.P.; Carr, P.W. I ntermolecular Interactions Involved in Solute Retention on Carbon Media in Reversed-Phase High-Performace LiquidChromatography. Anal. Chem. 1997, 69, 416-425.
38. Abraham, M. H.; Poole, C. F.; Poole, S. K. Solute Effects on Reversed-Phase Thin-Layer C'hromatography: A Linear Free Energy Relationship Analysis. J. Chromatogr. A 1996, 749, 201-209.
39. Abraham, M. H.;Treiner, C.; Roses, M.; Rafols, C.; Ishihama, Y. Linear Free Energy Relationship Analysis of Microemulsion Electrokinetic Chromatographic Determination of Lipophilicity. J. Chromatogr. 1996, 752, 243-249.
40. Abraham, M. H.; Chadha, H. S.; Dixon, J. P.; Rafols, C.; Treiner, C. Hydrogen Bonding. Part 40. Factors that Influence the Distribution of Solutes between Water and Sodium dodecysulfate Micelles. J. Chem. Soc., Perkin Trans. 2 1995, 887-894.
41. Poole, C. F.; Poole, S. K. Interphase M odel for Retention and Selectivity in Micellar Electrokinetic Chromatography. J. Chromatogr. A 1997, 792, 89-104.
42. Abraham, M. H.; Rafols, C. Factors that Affect Tadpole Narcosis - an LFER Analysis. J. Chem. Soc., Perkin Trans. 2 1995, 1843-1851.
43. Abraham, M. H.; Chadha, H. S.; Whiting, G. S.; Mitchell, R. C. Hydrogen Bonding 32. An Analysis of Water-Octanol and Water-Alkane Partitioning and the $\Delta \log \mathrm{P}$ Parameter of Seiler. J. Pharm. Sci. 1994, 83, 1085-1110.
44. Gratton, J. A.; Abraham, M. H.; Bradbury, M. W.; Chadha, H. S. Molecular Factors Influencing Drug Transfer Across the Blood-Brain Barrier. J. Pharm. Pharmacol. 1997, 49, 1211-1216.
45. Abraham, M. H.; Martins, F.; Mitchell, R. C. Algorithms for Skin Permeability Using Hydrogen Bond Descriptors: the Problem of Steroids. J. Pharm. Pharmacol. 1997, 49, 858865.
46. Abraham, M. H.; Whiting, G. S.; Carr, P. W.; Ouyang, H. Hydrogen Bonding 45. The Solubility of Gases and Vapours in Methanol at 298K: an LFER Analysis. J. Chem. Soc., Perkin Trans. 2 1998, 1385-1390.
47. Abraham, M. H.; Whiting, G. S.; Shuely, W. J.; Doherty, R. M. The Solubility of Gases and Vapours in Ethanol - the Connection between Gaseous Solubility and Water-Solvent Partition. Canad. J. Chem. 1998, 76, 703-709.
48. Abraham, M. H. Unpublished work.
49. Mayer, U. A Semiempirical Model for the Description of Solvent Effects on Chemical Reactions. Pure Appl. Chem. 1979, 51, 1697-1712.
50. Kamlet, M. J.; Abboud, J.-L. M.; Abraham, M. H.; Taft, R W. Linear solvation Energy Relationships 23. A Comprehensive Collection of the Solvatochromic Parameters π^{*}, α, and β, and Some Methods for Simplifying the Generalized Solvation Equation. J. Org. Chem. 1983, 48, 2877-2887.
51. Catalan, J.; Gomez, J.; Saiz, J . L.; Couto, A.; Ferraris, M.; Laynez, J. Calorimetric Quantification of the Hydrogen Bond Acidity of Solvents and its Relationship with Solvent Polarity. J. Chem. Soc., Perkin Trans. 2 1995, 2301-2305.
52. Abraham, M. H.; Whiting, G. S.; Shuely, W. J.; Doherty, R. M. Hydrogen Bonding 14. The Characterization of Some N -Substituted Amides as Solvents - Comparison with GasLiquid Stationary Phases. J. Chem. Soc., Perkin Trans. 2 1990, 1851-1857.
53. Pierotti, R.A. A Scaled Particle Theory of Aqueous and NonAqueous Solvents. Chem. Rev. 1976, 76, 717-726.
54. Wilhelm, E.; Battino, R. Estimation of Lennard-J ones (6, 12) Pair Potential Parameters from Gas Solubility Data. J. Chem. Phys. 1971, 55, 4012-4017.
55. Hafkenschied, T. L.; Tomlinson, E. Isocratic Chromatographic Retention Data for Estimating Aqueous Solubilities of Acidic, Basic and Neutral drugs. Int. J. Pharm. 1983, 17, 1-21.
56. Hafkenshied, T.L. Influence of Mobile Phase Methanol Content and Solute Character on Relationships between Reversed-Phase Liquid-Chromatographic Retention and Hy -drophobic-Lipophilic Parameters of Aromatic Compounds. J . Chromatogr. Sci. 1986, 24, 307-316.
57. Sugii, A.; Harada, K. Evaluation of Vinylpyridine and Vinylpyridinium Polymers as Column Packings for HighPerformance Liquid-Chromatography. J . Chromatogr. 1991, 544, 219-232.
58. Szabo, G.; Csato, E.; Offenmuller, K.; Devai, M.; BorbelyKuszmann, A.; Liptai, Gy. Preparation and Retention Characteristics of Different Phenyl Phases for Reversed-Phase Liquid-Chromatography. Chromatographia 1988, 26, 255258.
59. Abraham, M. H.; Chadha, H. S.; Leitao, R.; Mitchell, R. C.; Lambert, W.J.; K aliszan, R.; Nasal, A.; H aber, P. Determination of Solute Lipophilicity, as $\log \mathrm{P}$ (octanol) and log P (alkane) Using poly(styrene-divinylbenzene) and Immobilised Artificial Membrane Stationary Phases in ReversedPhase High-Performance Liquid-Chromatography. J . Chromatogr. A 1997, 766, 35-47.
60. Yeh, K. C.; Higuchi, W. I. Oil-Water Distribution of pAlkylpyridines. J. Pharm. Sci. 1976, 65, 80-86.
61. Giesen, D. J.; Chambers, C. C.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 1997, 101, 5084-5088.
62. Platts, J. A.; Butina, D.; Abraham, M. H.; Hersey, A. J. Chem. Inf. Comput. Sci., in press.

Acknowledgments

This paper is dedicated to the memory of Robert W. Taft, a friend and colleague, who made outstanding contributions in physical organic chemistry, and who, with Mortimer J Kamlet, pioneered the study of linear solvation energy relationships. One of us (J.A.P.) is grateful to Glaxo Wellcome for a postdoctoral fellowship, and we thank Dr. Christopher J. Cramer for his computations of $\log \mathrm{P}_{\text {chl }}$, and Dr. Cramer and Dr. Donald G. Truhlar for their interest in this work.

J S990008A

[^0]: * Corresponding author.
 ${ }^{\dagger}$ University College London.
 \ddagger GlaxoWellcome.
 § Pomona College.
 " University of California (deceased).

[^1]: ${ }^{\text {a }}$ Observed values from refs 24 and 25 unless otherwise shown. Calculated values on eq 6. ${ }^{b}$ Observed values obtained from $\log L^{W}$ and $\log P_{\text {ch }}$ unless otherwise shown. Calculated values on eq $9 .{ }^{\text {c }}$ Directly determined values from ref 21 unless otherwise shown. ${ }^{d}$ Solubility Data Project Series. ${ }^{e}$ From log Lchl and $\log L^{W}$. ${ }^{f}$ Thomas, E. R., Newman, B. A., Nicolaider, G. L., Eckert, C. A. J. Chem. Eng. Data 1982, 27, 233. ${ }^{g}$ Park, J. H., Hussam, A., Cousanon, P., Fritz, D., Carr, P. W. Anal. Chem. 1987, 59, 1970. ${ }^{h}$ Gerrard, W. J. Appl. Chem. Biotechnol. 1972, 22, $623 .{ }^{i}$ Dohnal, V., Vrbka, P. Fluid Phase Equilib. 1990, 54, 121. ${ }^{i}$ Taking $\gamma^{\text {inf }}=1 .{ }^{k}$ Trans. Faraday Soc. 1957, 53, 607. ${ }^{\text {I This }}$ work. ${ }^{m}$ See footnote c. ${ }^{n}$ Phillippe, R., Jose, J., Clechet, P. Bull. Soc. Chim. Fr. $1971,2866$. ${ }^{\circ}$ Abraham, M. H. Unpublished results.

[^2]: ${ }^{a}$ This includes the constant 0.168 in eq 6 and -1.271 in eq 7 . Observed values are in chloroform 2.80 (ethanol), 3.87 (butanone) and 2.87 (hexane) and in water -1.46 (methane), 3.67 (ethanol), 2.72 (butanone), and -1.82 (hexane).

